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Abstract

Equivalent acoustic source characterization of duct-borne fluid machinery noise is often undertaken by
interpolating the results of two-microphone pressure measurements with different external acoustic loads
over a linear one-port source model. If the source is time-invariant, the one-port source characteristics can
be determined by using only two external loads. This is well known as the two-load method. An extension
of the two-load method for time-variant sources is also available and known as the multiple-load method.
In these methods the source is treated as a ‘black-box’. This paper addresses the problem of one-port source
characterization when the linear operations inherent in the ‘black-box’ are known explicitly. The equations
governing the explicit one-port source models are derived and the source characteristics are shown to be
measurable using only few acoustic loads. It is not the purpose of this paper to discuss the application of
these models to any specific fluid machinery; however, of particular interest are the explicit source models
that require only two loads. Numerical results are presented to show some features of such time-invariant
and time-variant explicit one-port source models.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Equivalent acoustic source characterization of duct-borne fluid machinery noise is often
undertaken by using linear one-port models. The previous work and the measurement methods
available for estimation of the characteristics of a linear one-port source are encompassed in the
review article by Bodén and Abom [1]. They consider the existing measurement methods in two
groups. The methods in the first group require the use of an external sound source, whereas those
in the second group require the use of external loads. The present paper will contribute to the
second group of methods when complex pressure measurements can be made at the source plane.
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In this case, if the equivalent source is time-invariant, the one-port source characteristics can be
determined by using only two external loads. This is known as the two-load method. Although the
two-load method is strictly valid for linear time-invariant equivalent source characterization,
several authors have reported that it may give useful results also in situations that are not exactly
time-invariant or linear, if applied by using a number of extra loads to average out the modelling
errors in the least-squares sense. An extension of the two-load method to characterization of
linear time-variant periodic sources has been presented by Bodén [2]. This method, which is
known as the multiple-load method, requires 1 + 2 M loads, where M denotes the number of
harmonics to be included in the source spectrum

The two and multiple-load methods are ‘black-box’ formulations, that is, no information is
required for the formulation of the equivalent source system other than its linearity. In some
cases, however, further information about the structure of the equivalent source system may be
available or can be stipulated. The present paper addresses the problem of equivalent one-port
source characterization, by using external loads, when the linear operations inherent in the ‘black-
box’ are known explicitly. It will be shown that such explicit one-port source models can be
measured by using only few loads. It is not the purpose of this paper to discuss the application of
explicit one-port source models to any specific fluid machinery, however, of particular interest are
the explicit source models that require only two loads and some numerical results obtained using
these are included to show the features additionally available when using an explicit source model.

The present analysis also provides a unified formulation of equivalent linear one-port sources.
The ‘black-box’ treatment is still possible, in which case one re-discovers the two-load method for
time-invariant sources, and a generalization of the multiple-load method for time-variant periodic
sources.

2. One-port equivalent source formulation
2.1. Assumptions and definitions

The Thévenin theorem on equivalent linear networks, which is carried over to duct acoustics by
assuming fundamental mode propagation, forms the basis of measurements for one-port source
characterization of duct-borne fluid machinery noise. This approach presumes that the fluid
machinery noise source and the duct system that transmits it can be modelled as a two-terminal
network of passive linear elements and independent pure sources. The section of the duct at which
the Thévenin theorem is invoked for equivalent source characterization is referred to as the source
plane. It is assumed that plane wave decomposition by complex pressure measurement can be
made at the source plane using the two-microphone method. Then, the travelling pressure wave
components at the source plane are considered as quantities known by measurement, and the
measured acoustic pressure, p'(7), at the source plane is given by the sum of the pressure wave
components as

POy =p ®+p (), (1)

where ¢ denotes the time and the superscripts ‘+ “ and ‘—* are used as usual to refer to the forward
and backward travelling pressure wave components, respectively. Upon neglecting viscothermal
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effects, the pressure wave components are related to the particle velocity, ¢/(¢), by the
relationship

pet'(1) = p* (1) —p (1) 2)

Here, p denotes the ambient density and ¢ denotes the speed of sound at the source plane, which is
assumed to be constant temporally. Hence, the particle velocity at the source plane also
constitutes a variable known by measurement. It should be noted that, when mean flow is present
in a duct, acoustic pressure and particle velocity are not power variables as their electrical
analogues, voltage and current. For a uniform duct carrying a uniform subsonic mean flow, p/'(¢)
and v'(7) can be defined as acoustic power variables if Eqgs. (1) and (2) are written with p™(¢)
replaced by (1 + M,)p*(¢) and p~(¢) by (1 — M,)p~ (), where M, denotes the Mach number of the
mean flow velocity, as the product of thus defined p'(f) and v/(¢) gives the instantaneous axial
acoustic intensity in the duct . Therefore, in what follows, p/(f) and v/(¢) can be interpreted either
as the physical acoustic pressure and particle velocity or, if the above-described modification is
supposed to have been made, as acoustic power variables.

For fluid machinery running under steady conditions, invoking of the Thévenin theorem at the
source plane of the flow-duct system gives, in the time domain,

po(d) = [3{/(0}] +0' (1), (3)

where a prime (/) denotes the fluctuating part of a quantity, 3 denotes a linear integro-differential
operator and po(#) denotes the fluctuating part of the equivalent ideal pressure source, and all
time-dependent quantities are periodic functions of time of period, say 7. It is assumed that the
operator 3 is of the form

I =aD*+bDF + ..., (4)

where D’ denotes A-fold differentiation with respect to time for positive 4, or integration if 1 is
negative, o, 5, ... denote non-equal integers and the coefficients a, b, ...denote real constants or
periodic function of time of period 7. A typical form of Eq. (4) is 3 = a + bD, that is, « = 0 and
p =1, which represents a predominantly resistive and inductive source.

The objective of the source measurements may now be posed as the determination of po(f) and
the source coefficients a,b, ... . The next section derives the equations that are needed for the
determination of these parameters.

2.2. Derivation of complex source equations

It is convenient to represent the coefficients a,b, ... in Eq. (4) generally by Fourier series
expansions
o0 0
a(t) = > Apexplikot), b(t)= Y B exp(ikor), ... (5)
k=—w k=—o0

Here, Ay and Bj denote the complex Fourier coefficients, w(= 27/T) denotes the fundamental
radian frequency and i denotes the unit imaginary number. Not all of these coefficients have to be
periodic functions, some may be constant, in which case the corresponding Fourier series reduces
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to a real constant. For simplicity of the presentation, however, the following analysis assumes
them to be all constant or periodic in time.

The periodic time dependence of the coefficients in Eq. (4), if any, is assumed to be due to
periodic fluid machinery action that also determines the time dependence of the transmitted noise.
Then, p/(r) and v/(rf) may be assumed to be periodic of period T and have Fourier series
representation as

V(1) = Z Viexp(ikot), p'(f) = Z P,exp(iknt), (6)
k;éO k;éO

where P, and V) denote the complex Fourier coefficients. Upon substituting the foregoing
expansions in Eq. (3), it follows that

o0 o0
po®=| > | D ZW v, |explkon| + p'(0). (7
k=—oo | M=—0
k#0 m#k
Here,
Z® = (ikw)* A,, + (ko) By, + - . (8)

Upon separating the convolution summation into parts corresponding to positive and negative
values of m and noting the identity

7%, = 2", ©)
Eq. (7) can be expressed as

po(t) = Z Zz(k myl Z Clempy 28OV | explikor) + p'(),  (10)
k;;g\ g;#k ngé 1k

where an inverted over-arc (4) denotes the complex conjugate. Thus, it follows from Eq. (10) and
the second of Eq. (6) that, the Fourier series for the source pressure is

"
po(t) =Y Srexp(ikar), (11)

k=—w

k#0

where
o0

Z ZEV L+ Y 2+ 2OV P (12)

m;ék n?;’: jk

This infinite set of complex equations can be used for the determination of the equivalent source
characteristics if the convolution summations are suitably truncated. The number of terms in
these summations determines the number of harmonics in the spectrum of the integrodifferential
operator 3, whereas the number of complex equations determines the number of harmonics in the
spectrum of the source pressure, po(?). It is assumed that, using the first M harmonics can
represent I with sufficient accuracy. This would induce a finite number of unknowns in Eq. (12).
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However, Eq. (12) are not independent for all k = — o0, ...,—1,1, ...,00. Indeed, a straightfor-
ward analysis shows that, S_x = Sk, that is, Eq. (12) are independent only for k = 1,2, ...,00.
Therefore,by truncating the number of harmonics in the convolution summations at M and the
number of complex equations at K, the equations that can be used for source characterization can
be expressed as

M M
Sk=> Z¢ My 4N 2+ 28 Vie+ P, k=12, ..K. (13)
m=1 m=1
m#k
Eq. (13) will be referred to as the complex source equations.

In general, the total number of source equations that can be written for one set of measurement
data turns out to be less than the total number of unknowns in these equations. The deficiency in
the number of equations must, therefore, be met by using independent sets of measurement data
that are derived by applying a number of different loads to the duct system. Obviously, this

approach is strictly feasible if the equivalent source is independent of the loads. The next section
presents an analysis of the minimum number of loads that will be needed in particular cases.

2.3. The number of measurement loads

The number of loads for which the number of source equations equals the number unknowns in
Eq. (13) depends on whether the integrodifferential operator 3 is considered implicitly, as a
‘black-box’, or the operations «, f8, ... are assumed to be known explicitly. These are considered
separately in the following.

2.3.1. Explicit time-variant source model
First consider the explicit treatment of operator 3. In this case, the number of real unknowns
which the complex Fourier coefficients Ay A BBy ..o m=1,2, ..., M, and Ay, By, ... present
will be equal to j(1 +2 M), where j denotes the number of the source coefficients a,b, .... K
complex equations are required to solve the unknowns, but every complex equation will introduce
a new complex unknown, Si, k = 1,2, ...,K. Then,
_Jjd+2M)
H= K

where N is the ratio of the total number of real unknowns to the total number of scalar equations.
Obviously, if N is an integer, it denotes the number loads that will be needed for the determination
of the source characteristics. Solutions of the first of Eq. (14) for an integer N can be expressed as

N—l4n, (14)

K|(1+2M) =0, (/%)|(1+2M):0, j=2,46, ..., (15)

where A|B means the remainder of B divided by 4. Some combinations of j, M and K, that satisfy
Eq. (15) with two and three loads are given in Table 1. With such combinations, the operator J is
determined to the accuracy of M harmonics in j operators, whilst the source pressure is
determined to the accuracy of K harmonics. The evaluation of the convolution summations
requires, however, that the number of harmonics in the spectrum of the acoustic measurements is
equal to K + M, at least.
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Table 1

Integer combinations that solve Eq. (15); the pattern of this table can be continued in vertical and horizontal directions
J K M N J K M N J K M N J K M N

2 7 3 2 2 9 4 2 2 115 2 2 13 6 2

4 14 3 2 4 18 4 2 4 2 5 2 4 26 6 2

6 21 3 2 6 27 4 2 6 33 5 2 6 39 6 2

4 7 3 3 4 9 4 3 4 115 3 4 13 6 3

8 14 3 3 8 18 4 3 8 22 5 3 8 26 6 3

12 21 3 3 12 27 4 3 12 33 5 3 12 39 6 3

2.3.2. Time-variant black-box model

The mtegrodlfferentlal operator 3 can be treated also as a ‘black-box’ by considering Z(k m,
Z( k=m) and Z )in Eq. (13) as complex unknowns without explicit reference to the form of the
mtegrodlfferentlal operations in Eq. (4). Upon assuming for a moment that M <K, the total
number of these terms will be 2 K(M + 1) — M. Then, with K complex equations, the ratio of the
number of complex unknowns to the number of complex equations is given by N = 2(1 + M) —
M /K, which cannot be an integer; that is, the determination of the source characteristics is not
feasible for M <K. For M > K, on the other hand, the total number of complex unknowns is
K(1 + 2 M) and, therefore, the source characteristics can be determined by using

N=1+2M (16)

loads. M and K can be selected arbitrarily provided that the condition M > K is satisfied and that
the acoustic measurement spectrum covers the first M + K harmonics. Bodén’s multiple-load
method [2] corresponds to the M = K case of this black-box formulation.

2.3.3. Time-invariant black-box model

The foregoing analysis takes into account the possibility that the linear operator 3 may be time-
variant. If 3 can be postulated to be time-invariant a priori, the coefficients a, b, ... can be set to
constant values. Then 4,, =0, B,, =0, ... for m#0 and Eq. (13) reduces to

Si=ZPVi+ P, k=12 ..K. (17)

As these equations are uncoupled and every equation contains two complex unknowns, the source
characteristics can be determined for all harmonics in the spectrum of the acoustic measurements
by using only two loads. This is the popular two-load method, and Z(k) is known as the source
impedance. In this method, it is clear that, the operator 3 is treated as a ‘black-box’.

2.3.4. Time-invariant explicit source model

An explicit treatment of Eq. (17) is also possible. If Zg )is treated explicitly, the total number of
real unknowns, the coefficients, a, b, ... and the real and imaginary parts of Sy, in Eq. (17) will be
equal toj + 2 K, where K is the number of harmonics required for the representation of the source
strength, which also determines the number of complex equations that are to be written. Then,
from Eq. (14) for M = 0, taking j = 2uK, where p denotes any integer, will determine the source
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characteristics by using N = 1 + u loads. The best choice for u is u = 1, as this gives the source
pressure strength with the largest number of harmonics for a given j (see Section 3.3).

3. Solution of source equations

This section presents numerical algorithms for the determination of the source characteristics
with explicit and ‘black-box’ treatment of the governing integrodifferential operator. An
application is presented in the next section.

3.1. The explicit source formulation

With Eq. (8) applied explicitly, Eq. (13) can be expressed in matrix notation by using the
following vector definitions:

S] Pll A] Bl
Ao
—~ S| = |P| ~ O B>
S=| |, P=| 7, A=| |, B=| " |..., Xo= |5 |, (18)
Sk P/K Ap Bu

where an over-arc (A) is used to denote a vector or matrix with complex elements. Then, in matrix
form, Eq. (13) is

S=V,A+V,A+V,B+VB+ -+ VoXo +P, (19)
where
A£D)'Vi,, A+2'Vi, ... (+£M'Vi
V(o) (211)'11/5il (2i2)'iV£i2 - (2iM)'AV§iM Cimafe. QO
(KiljiV;{il (Kizﬁiv;{iz (KJ_FMYV;&M

(o) V] ()]
7 20V 2w)'V}

21)

(Koo)' Vi (Koo)' Vi



396 E. Dokumaci | Journal of Sound and Vibration 260 (2003 ) 389-402

Separating the real and imaginary parts of Eq. (19), one obtains

Xo
Ag
= S o S+ Ss- ot o o+ S- ot —
[&g__vw Ve Var —Vu+Vy Vee+ Ve =Vu+Vy | | A
R S, ot oS- o+ e oS- St 5
Sy Vo Va+Vy V=V Vu+Vy V=V .| |Br
B,
Pr
+ 1~ s (22)
P;
or, briefly
S=VX+P. (23)

In Eq. (22), the attached subscripts ‘R’ and ‘I’ denote, respectively, the real and imaginary parts of
a complex quantity, and the meanings of the symbols in Eq. (23) are obvious from Eq. (22).
Eq. (23) constitutes 2 K scalar equations for j(1 + 2 M) + 2 K real unknowns. The number of
loads required to determine the source characteristics are determined from Eq. (14). Thus,
assuming N loads solve the source characteristics, Eq. (23) will apply for every load separately:

S=VOX+PD, S=VOX+P?, .., S=VVX4 PV, (24)

where the superscripts refer to the loads. Subtracting the first of Eq. (24) from the remaining
equations in turn gives

v® _ y P® _ p
v — y P® — pM

' X=-— , . (25)
v _ vy PM _ p)

This equation determines the coefficients of the operator 3. The source pressure can then be
computed using the first, say, of Eq. (24). Note that the coefficient matrix in Eq. (25) has the
dimensions (2 K(N — 1)) x j(1 4+ 2 M). Since the number of loads is selected according to Eq. (14),
the first dimension will be equal to j(1 4+ 2 M), making the coefficient matrix a square matrix, as
desired.

If the equivalent source is known to be time-invariant, then Eq. (17) applies and Eq. (22)

reduces to
S P
Sr

P;
S — VoXo + P. 27)

Vor

Vor

which is written briefly as
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Egs. (24) and (25) hold for this case with X replaced by X, and V" replaced by v,
n=12,...,N, the coefficient matrix in Eq. (25) now being a square matrix of dimension j X j.

3.2. The ‘black-box’ formulation

In this case, Eq. (13) can be solved one by one. This follows from the fact that every one of these
equations contains 1 + 2 M complex unknowns, which is equal to the number of loads required
for the solution (see Eq. (16)). Therefore, given the measurement data for 1 + 2 M loads, any one
of Eq. (13) can be written 1 4+ 2 M times and the resulting set of equations can be solved for the
complex unknowns in that equation. Repeating this procedure for the remaining equations
determines all the complex unknowns in Eq. (13). This formulation is not considered any further
in this paper, as the number of loads that are required is generally too large to be of practical
value, for example, at least 21 loads are required to measure the first 10 harmonics of the source
pressure strength.

In the time-invariant case, which is the usual two-load method, Eq. (17) can be solved either as
described above on per equation basis, or by combining the two sets of the equations
corresponding to the two loads. The latter is similar to the solution described for Eq. (24), except
that now the unknowns vector can be dealt with in complex form.

3.3. Load and harmonic over-determination

The linearity and load-independence hypotheses that underlie the foregoing one-port equivalent
source formulations are seldom satisfied exactly in real fluid machinery. When applied to real
sources that are non-linear and load dependent to some degree, the modelling errors may be
minimized in the least-squares sense by using a number of extra loads, as is the current practice
with the two-load and the multiple-load methods. For the present explicit one-port formulation,
this consists of writing Eq. (25) for N + n loads, where n is the number of extra loads. Then,
Eq. (25) constitutes an over-determined system of algebraic equations and the unknowns vector,
X, can be solved by taking the pseudo-inverse of the coefficients matrix. The black-box models are
over-determined over loads similarly, by writing Eq. (13), or (17), for N + n loads.

The explicit source models, in addition to over-determination over a load space, also allow
over-determination over the harmonics in the spectrum of the measurements. This consists of
writing the source equations for the first K + k& harmonics, where K satisfies Eq. (15) and &
denotes the extra number of harmonics. Then, Egs. (20) and (21) are written for K 4+ k harmonics
and Eq. (25) becomes an over-determined set, which can be solved again in the least-squares sense.

4. The explicit two-load method

The use of an explicit one-port source models with N acoustic loads is called, for ease of
reference, the explicit N-load method. From a practical point of view, the most significant explicit
N-load method is the explicit two-load method. This section presents an application of the explicit
two-load method to show the features additionally provided over the usual two-load method
when an explicit equivalent source formulation is adopted. Over-determination over a load space
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1s not considered, as this is well treated in the literature with reference to the two-load and
multiple-load methods [1], and it is similarly applied with the explicit N-load method and has
similar statistical implications.

For the present application, the source operator is assumed to be of the form 3 = a+ bD and
the source plane data are derived, by the usual discrete Fourier transform methods, from two-
microphone pressure measurements on an engine exhaust pipe. The details of the engine and the
measurements are not relevant to the present analysis as only the end results are needed for source
characterization. The results are based on a particular set of source plane data for two acoustic
loads at the fundamental frequency of 10 Hz and the source characteristics are given for the first
20 harmonics.

Fig. 1 shows the source characteristics for the first 20 harmonics, as computed with the usual
two-load method. The source impedance is given in normalized form, that is, as ng) /pc, and,
therefore, it is non-dimensional. In this method, the harmonics of the source characteristics are
determined solely by the corresponding harmonics in the source plane data. While this is
consistent with the assumption of linearity and time invariance, it means that, if there are
interactions between the harmonics due to violation of these assumptions, their effects will be
interpreted incorrectly. Bodén and Albertson [3] have noted that the source impedance with a
negative real part is physically meaningless for a linear system and should be taken as indication
of non-linear interactions between the harmonics. Also, it is known that, the real part of the
source impedance may come out negative when a time-variant source is modelled as if it were
time-invariant by using the two-load method [2]. Thus, the observed negative real parts of the
source impedance in Fig. 1 may be attributed to the inherent non-linearity or time-variance of the
equivalent source under consideration.

SsrFrrTTTTTT F-¥ o e s e e e e
IF 3r
S S
2 -1 : E-l :
-3}k 3k
_5 [ L 1 1 L L 1 1 L L _5 [
0 40 80 120 160 200 0 40 80 120 160 200
0.5 —r———-r—-rr—-r—r—r—17r 0.5 —r——T—r—-"—-"1—r1—7—771
g 0.3 : - 0.3 : L
a2 o b
= O01F = 01f .
7 s = i
Z ok @ o _\/\/\/—\/\A/—f
L g} ]
-0.3F -03 L
—05 [ 0 ~05 [ v v v v ]
0 40 80 120 160 200 0 40 80 120 160 200
Frequency (Hz) Frequency (Hz)

Fig. 1. Source characteristics computed using the two-load method. Re{} and Im{} denote the real and imaginary parts
of a complex quantity; S; denotes the kth harmonic of the complex source pressure strength, Z; denotes the kth
harmonic of the complex normalized source impedance.
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Fig. 2. Source characteristics computed using the explicit time-invariant two-load method with harmonic over-
determination over the first 20 harmonics. Labels of axes as in Fig. 1.

Shown in Fig. 2 are the source pressure strength and normalized source impedance as computed
using the explicit two-load method with the source operator treated as time-invariant, that is, with
the coefficients ¢ and b assumed to be constant. These results are obtained by using harmonic
over-determination over the first 20 harmonics in the measurement spectrum. Harmonic over-
determination is necessary, as only the first harmonic of the source spectrum can be computed
without it for the assumed form of the source operator. Over-determination with a larger number
of harmonics was also considered, but this did not effect the characteristics shown in Fig. 2. The
source impedance is calculated from

ZP = (ko) Ao + (ko) By + -, k=1,2,...K (28)

and normalized as described above. It is seen that, with harmonic over-determination over the
measurement spectrum, the real and imaginary parts of the source impedance are smoothed out to
straight lines: The real part of the normalized source impedance is equal to a/pc and the slope of
the imaginary part is proportional to b, where a and b are determined by linear regression over the
measurement spectrum. The real part of the source impedance is close to zero, but still negative,
which may be due to traces of interactions between the harmonics. It should be noted that,
without harmonic over-determination, the explicit two-load method with a time-invariant source
operator with j terms is equivalent to the usual two-load method in its harmonic range, i.e., up to
and including the harmonic K = j/2.

Shown in Fig. 3 are the source pressure strength and the normalized effective source impedance,
which is defined by Eq. (29), as computed by using the explicit two-load method with the source
operator treated as time-variant. These results were obtained by using M = 6 harmonics in
spectra of the coefficients a(f) and b(¢), and harmonic over-determination over the first 40
harmonics (K = 40) in the measurement spectrum. Without harmonic over-determination, the
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Fig. 3. Source characteristics computed using the explicit time-variant two-load method with harmonic over-
determination over the first 40 harmonics and six harmonics in the spectrum of the coefficients of the source operator.
Solid: Load 1, dash: Load 2. Labels of axes as in Fig. 1.

source spectrum can be determined to 1 4+ 2 M harmonics, but M could not be increased freely
due to the impact of ill-conditioning problems, which tend to be more inhibiting without
harmonic over-determination. Therefore, in this case, harmonic over-determination is used both
to extend the frequency range of the source spectrum and to alleviate ill-conditioning problems
with relatively large M. Increasing the extent of harmonic over-determination does not alter the
source characteristics in Fig. 3.The effective source impedance is defined, from Eq. (13), as

(k) Z(k)—l— ZZ(k m) k m+ZZ( k—m) " k+m k+m k=1,2,...,K. (29)

m#k

which is normalized as usual. With this definition, Eq. (13) can be expressed in the form of
Eq. (17) with Z( ) replaced by Z(k) The effective source impedance depends explicitly on the
source plane measurement data and therefore, it can be computed for each acoustic load. Fig. 3
shows the effective source impedance in normalized units for both loads. With the two
characteristics being markedly different, the equivalent source may be said to be load dependent
to some degree.

For smaller values of M, the source characteristics display substantial variations, but these
variations tend to diminish as M increases. This indicates the presence of relatively stronger
interactions between the harmonics of smaller orders than larger orders. To give an idea of these
variations, the source characteristics are shown superimposed in Fig. 4 for M =6, 7 and §
harmonics in the spectra of a(¢) and b(¢), the normalized source impedance being for the load that
is referred to as the second load in Fig. 3. The characteristics for the source pressure display a fair
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Fig. 4. Effect of the number of harmonics in the spectrum of the coefficients of the source operator on source
characteristics computed using the explicit time-variant two-load method with harmonic over-determination over the
first 40 harmonics. Solid: M = 6, dash: M = 7 and broken: M = 8. Labels of axes as in Fig. 1.

degree of convergence, however, there are marked variations in the effective normalized source
impedance.

5. Conclusion

A unified formulation of equivalent linear one-port source characterizations of duct-borne
noise based on two-microphone pressure measurements with external loads has been presented.
The main feature of this formulation is the introduction of the linear source operator 3. If this
operator is treated as a black-box, one obtains the well-known two-load method for a time-
invariant source. For a time-variant periodic source, the black-box approach is not convenient
because it requires too many external loads. If, however, the operational structure of the source
operator is known, or stipulated, explicit one-port source models that require only few external
loads can be developed. This paper has presented the equations governing the measurement of
such explicit one-port equivalent source models and demonstrated the features that are
additionally available when using these models.

Inherent in one-port source characterization using when external loads is the assumption that
the equivalent source is independent of the loads, as well as being linear. These conditions are
seldom satisfied exactly in real fluid machinery. Therefore, the ability to test whether a measured
source is linear and loadindependent is of importance. The features of the explicit one-port source
models may find use as statistical measures of source non-linearity, time-variance and load
dependence, but these remain as topics for future study.
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In the present analysis, the source operator J is assumed to have a known explicit operational
structure. If such information is not available, 3 can be considered as a truncated form of a
complete power series expansion in D. This is possible for any stable linear network with ideal
elements. For example, if the equivalent source network is time-invariant, the operator D can be
replaced with the Laplace variable to convert the operator 3 to the driving point impedance,
which is a quotient of two polynomials in the Laplace variable and can in general be expanded
into a power series. For a time-variant network, the driving point impedance is not generally
expressible in such an explicit form due to involved convolutions, but a power series expansion is
still possible. The problem here is that the number of terms, j, in the power series representation of
the source operator cannot be increased freely, because Eq. (25) becomes severely ill-conditioned
as j increases. Thus, it is desirable to keep j small enough, less than 10, say, unless ways are found
to prevent the impact of ill-conditioning.
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